
Towards monitoring systems development on the
basis of the multilevel relative finite state

operational automata

Michael Chervontsev1,2[0000−0003−3897−5068], Saddam
Abbas1[0000−0001−9931−463X], Alexander Vodyaho1[0000−0002−1933−0933], and

Natalia Zhukova3,4[0000−0001−5877−4461]?

1 Saint Petersburg Electrotechnical University ”LETI” (ETU) St. Petersburg,
197376, Russia aivodyaho@mail.ru

2 Research and Engineering Center of Saint Petersburg Electro-Technical University,
Saint-Petersburg, 197022, Russia chervontsev.mikhail@nicetu.spb.ru

3 Saint-Petersburg Institute for Information and Automation RAS St. Petersburg,
199178, Russia nazhukova@mail.ru

4 Saint Petersburg National Research University of Information Technologies,
Mechanics and Optics ITMO University, St. Petersburg, 197101, Russia.

Abstract. In the paper the problem of monitoring of a complex techni-
cal systems state of is considered. It is noted that such systems include a
large number of elements and their structures permanently change. Clas-
sification of problems of monitoring is given and possible approaches to
their decision are considered. For solving these problems it is suggested
to use model driven approach. As model of structure of a target system it
is offered to use multilevel relative finite state operational automata and
as behavior model it is offered to use the work flow graphs. The actual-
ity of models is provided by means of analysis of log files. Authors have
suggested an algorithm of multilevel relatively finite state operational
automata synthesis earlier. For maintenance in actual state of behavior
models one can use process mining algorithms. The example of usage of
suggested approach is given.

Keywords: monitoring systems · automata based approach to monitor-
ing systems development

1 Introduction

The modern stage of technology development is characterized by the permanent
increasing of the complexity of technical systems and by increasing of the number
of subsystems, number of hierarchy levels and by the complexity of links between
the elements of the system and by the complexity of the systems behavior. The
complexity of the systems behavior can be expressed in the expansion of the

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Vodyaho et al.

set of implemented functions, in the complexity of realized functions and in the
ability of systems to adaptation. Advanced systems realize elements of cognitive
behavior, including ability to learning and self learning. The problem of monitor-
ing the status of such systems becomes a complex scientific and technical task.
The monitoring system (MS) has to give information about the current state
of the target system (TS), consisting of a huge number of elements, the struc-
ture of which is permanently changing, with strict restrictions on the bandwidth
of communication channels and the number of observation points. Obviously,
modern MS must have a level of intelligence, at least no lower than the level of
intelligence of TS, i.e. should be adaptive and preferably have cognitive abilities.

2 Known approaches for monitoring problems solving

The problem of monitoring of the objects states was faced by many generations
of researchers and developers, in particular technical systems developers. In the
early stages, this problem was investigated by specialists in the of control sys-
tems, in particular adaptive control systems [1], where it was considered as one
of the subtasks of control theory. In later stages, this problem was faced by busi-
ness process management system developers [2, 3], where it was no longer tightly
linked to the problem of control systems development.

Nowadays there is currently no general theory of MS building. These prob-
lems are discussed using different architecture viewpoints and different perspec-
tives for different classes of information systems (IS), although it is becoming
increasingly clear that the MS represents a separate class of IS that can be
considered as a subclass of information management systems.

Development of modern MS can be based on the following main IT tech-
nologies: 1) theoretical researches in the field of adaptive control systems [1];
2) structural system dynamics studies [4]; 3) pragmatic approach to building
monitoring systems on the base of ITIL/ITSM approach [5], 4) BPM systems
[2]; 5) data fusion system [6]. For the developers of MS, the experience gained
in the construction of MS for non-technical objects, in particular natural and
biological objects, is of considerable interest.

From a theoretical point of view, the results obtained from studies in the
field of adaptive management systems construction, in particular [1], as well as
studies in the field of structural dynamics of systems [4] are the most useful for
the construction of the CM. In addition, the works of the authors [7, 8] on the
synthesis of multilevel automata models and the works [9] on the synthesis of
multilevel business processes (BP) from the logs can be noted. The pragmatic
ITIL/ITSM approach to building MS is very good for enterprise information
systems but attempts to apply it to other classes of IS, for example, for the
Internet of Things (IoT), as a rule, are not effective. The specifics of building
MS for the IoT are discussed [10]. A number of technologies can be useful for the
modern MS building: 1) data processing in sensor networks [11]; 2) algorithms
of process mining [12]; 3) multivevel automata synthesis [7,8]; 4) work related to
the use of software Agile architectures [13].

Monitoring Systems Development 3

It should be noted that the above mentioned approaches only address sepa-
rate aspects of MS development and do not form a holistic approach to develop-
ment of MS that can be used for monitoring complex technical systems (CTS)
with dynamic structure and adaptive behavior.

3 Suggested approach

The suggested approach is aimed primarily at solving the problems of effective
management of CTS with dynamic structure and behavior through the imple-
mentation of effective monitoring procedures. This approach can be applied both
to the implementation of monitoring procedures of some external TS, and to the
implementation of self monitoring procedure of MS. The key ideas of the devel-
oped approach is are the follows.

1. A TS is regarded as a partially observable system whose state information
is not fully available for a certain moment of time.

2. Available TS state information is stored in the form of models of the TS
that includes 3 model groups: models that describe structural dynamics, models
that describe TS behavior, and transformation models. The models actuality is
supported by means of log files processing.

3. The models are essentially architectural models. Thus, both TS and MS
can be considered as agile architecture systems.

4. The proposed approach can be positioned as a multimodel approach in
the sense of [4], based on the use of dynamic models, and as a agile architectural
approach, based on the use of many architectural points of view and architectural
perspectives [13].

The 3 main features of the proposed approach distinguish it from the existing
approaches: 1) the use of explicit models describing structural dynamics and
business processes in the TS; 2) structural dynamics and business processes are
considered as a single entity; 3) the use of an architectural approach to the
development of the MS, which allows to use suggested approach for solving the
task of monitoring the state of multilevel systems with dynamic structure and
adaptive behavior, which include many thousands of elements.

4 MS generalized model

In general, the MS consists of a TS and a monitoring subsystem. The monitor-
ing subsystem receives reports about events occurring in the TS. The monitoring
subsystem may provide requests for the state of the TS or its elements. The mon-
itoring subsystem works with models that are generated from status messages
(logs) and provides information to users according to their roles and requests.
Systems of different nature can be conceded as TS, but the subject of this work
is CTS. Within the framework of the developed approach, the structure and be-
havior of the TS are subject to the following main restrictions: 1) from the point
of view of the monitoring subsystem, the TS is passive, i.e. it does not react in

4 Vodyaho et al.

any way to attempts to pick up logs, it cannot prevent the attempts of pick up
logs, it does not change its state and behavior because of log pickupping; 2) log
sources are linked to certain subsystems and are not connected with each other
in any way; 3) all logs contain structured data which are represented in XES
(eXtensible Event Stream) format or can be converted to XES format [14]; 4)
the TS is not a hard real time system; 5) all control actions are formed on the
basis of the TS model; 6) all logs must be converted to XES format as part of
preprocessing; 7) all noises in logs shall be cleaned at the preprocessing stage.

Thus, the following types of tasks are not solved within the framework of the
suggested approach: 1) in the case when logs from the TS encapsulate unstruc-
tured data (texts in natural languages, voice messages); 2) in the case when the
TS is an active component, that is, it may prevent the process of log pick up by
suppression or distortion of logs, or when the TS changes its structure and/or
behavior when it detects an attempt to pick up the logs; 3) if the message se-
mantic is unknown, i.e. when the problem is to understand the languages which
is used for communication between TS elements (humans, animals, robots, etc.).

The MS can be considered as a log processing system. On the basis of logs
and context information, TS models are built, on the basis of which information
is presented to users according to their role and their requests. At the conceptual
level MS can be defined as Sm ={X,Y,M,F}, where X is a set of queries about
TS state, Y is a set of reactions to queries, M is a set of models, F is a set
of functions that implement mappings X→F Y, or X→F M→F Y. The generalized
structure of the MS which includes 3 automata is shown in Figure 1.

Fig. 1. The generalized structure of a MS.

Monitoring Systems Development 5

MS includes 4 main elements: MS = {R,SDCA,BPDCA,MCA}, where:
R - repository, SDCA - structural dynamics control automate, BPDCA - BP
dynamics control automate, MCA- monitoring control automate. The repository
is designed to store models, logs, scripts, contextual and other information.

Generalized algorithm of MS realized by MCA:
Step 1.Start background monitoring processes (polling)
Step 2. Waiting requests from other automata or a user
Step 3. If there is a request, from SDCA, then process the request and go

to step 2
Step 4. If there is a request from BPDCA, then processing and go to step 2
Step 5. If there is a request from a user, then processing and go to step 2.
Generalized algorithm of SDCA operation:
Step 1. Waiting for log from TS hardware or software platform or request

from MCA
Step 2. If the log from the TS platform is received, then the log cleaning,

processing and go to step 1
Step 3. If a request for MCA is received, processing and go to step 1
Generalized algorithm of BPDCA operation:
Step 1. Waiting for log from BP or request from MCA
Step 2. If the log is received, then the log cleaning, processing and transition

of item 1.
Step 3. If a request for APC is received, processing and transition of item

1.
In general case MS can be a part of monitoring and management system.

The generalized structure of such a system is shown in Figure 2).

Fig. 2. MS as a part of Management System.

System according to Figure 1 includes 4 main elements: TS, MS, control
signals generation subsystem and users. Monitoring requests can be generated
either by a user (manual control) or by the control signals generator (automatic
control or mixed mode). MS receives requests from users or from a control signals

6 Vodyaho et al.

generator about TS or its elements status in terms of a domain specific language.
MS transforms requests into log requests script and on the basis models and
information from logs generates answers to the requestor.

One can define following partial case of the system as shown in Figure 2: 1)
the system operates in automatic mode (user is absent); 2) the user can only
observe the behavior of the CA; 3) the user controls the system manually.

The MS can also be seen as a stand-alone management system that handles
monitoring requests for some external system.

5 Requirements to models

The model requirements that to the operation of automata can be formulated
by the following way.

General model system requirements. The general requirements for models to
be used in CTS MS can be defined as follows: 1) models must have ability to
describe CTS with dynamic structure and adaptive behavior; 2) models must be
functionally complete, i.e. they must be able to answer questions from all users
within the scope of the tasks; 3) models must be executable, i.e. it must be able
to use them in run time and preferably in non-rigid real time mode; 4) models
must have implementations of acceptable complexity, even for TS consisting of
a large number of elements.

Requirements to structural models. The main requirement for structural mod-
els is the ability to describe with their help the dynamic structure of TS in terms
of elements, connections and their current, past and future states of structural
elements of TS. They must give the possibility to describe the constantly chang-
ing multilevel structure of arbitrary complexity, and it must be possible to build
them automatically from logs.

Requirements for behavior models. The main requirement for behavior models
is the ability to describe with their help BP and determine BP state for current
moment of time, for past and future moments of time. They must allow observe
BP execution in run time using log information. They also must allow change
BP structure when TS structure changes.

Transformation model requirements. These models are used to form repre-
sentations and they can be conceded as brokers between the model system and
users. The main function of this subsystem is to translate queries formulated by
interested parties into the language of queries to the corresponding models and,
accordingly, to make the inverse transformation.

6 Automata models usage in MS

The models used in the frames of model based approach to MS construction are
essentially architectural models. Different formalisms such as UML diagrams,
Petri networks, graphs, particularly workflow graphs, ontologies, state machines
can be used as TS models [12, 13]. Taking into account the requirements to

Monitoring Systems Development 7

structural models, the most promising is the use of multilevel relative finite
state operational automata as the models.

The main argument in favor of this approach is the possibility of automatic
synthesis of such automata by logs [6, 7]. Structural models describe TS in
terms of subsystems, links between them, in terms of inputs and outputs, and
properties (attributes).

In order to describe dynamic behavior it is necessary to able to describe
multilevel managed adaptive processes. One of the key model requirements is
the ability to generate automatically process models from logs.

Automata models also can be used for solving this problem. Thus, a hierarchi-
cal stochastic automate with a reconfigurable structure can be used to describe
the monitoring process in its most general form. In fact, it is a set of automata
that can be used for simulation.

One can define the following main types of TS: 1) simple TS with fixed struc-
ture; 2) complex TS with fixed structure; 3) simple TS with variable structure;
4) complex TS with variable structure; 5) simple cognitive TS; 6) complex cogni-
tive TS. Table 1 shows the types of automata that can be used to model separate
TS classes.

The simplest Mealy machine is defined as A = (X,Y, S, T, S0), where X and
Y are finite sets of input and output signals, S is not more than countable set,
S0 is initial state), T is table of transitions. Such machines are studied in detail,
algorithms of their synthesis are known, but with their help it is possible to
describe directly only the simplest MS with a fixed structure of small complexity.
A hierarchical (multilevel) automate is defined as an oriented graph H = {V0,
Vk, L, T} having an initial vertex V0, nested vertices Vk, and a plurality of arcs
L.

Table 1. Types of automata that can be used in MS.

TS structure Automata type Necessity of au-
tomatic automata
synthesis

1 Simple TS with fixed
structure

Elementary finite state
automate

No

2 Complex TS with fixed
structure

Multilevel finite state au-
tomate

No

3 Simple TS with variable
structure

Automate with variable
structure

Yes

4 Complex TS with variable
structure

Multilevel automate with
variable structure

Yes

5 Simple cognitive TS Stochastic automate with
variable structure

Yes

6 Complex cognitive TS Multilevel stochastic
automate with variable
structure

Yes

8 Vodyaho et al.

Each can be mapped to either automate A or graph H, and the vertex V0
only to graph H. Hierarchical MS are typically organized as a tree. When the
state of the system changes, very often only the separate low level subsystems
change their state. Hierarchical automata can in principle be reduced to con-
ventional Mealy machine. The use of hierarchical automata in some cases makes
it possible to simplify the procedure of their synthesis. They can also be useful
when working with distributed MSs. If the structure of the TS is not constant,
then the automate has to be rebuilt. This is not possible in all cases. Variable

Table 2. Types of automata with variable structure

Inputs Outputs States Transitions Comments

0 0 0 0 0 Classical automate with fixed structure

1 0 0 0 1 Transition table changes

2 0 0 1 0 -

3 0 0 1 1 Individual states can appear and disappear
and the transition table can be changed

4 0 1 0 0 Only the output function changes, the logic
of the automate operation remains un-
changed

5 0 1 0 1 The function of the outputs and the logic
of the operation of the automaton, which
is described in terms of the same states,
change

6 0 1 1 0 -

7 0 1 1 1 Changes the function of outputs and the
logic of the automate operation, which is
described in terms of the same states

8 1 0 0 0 Only the output table changes, the logic re-
mains the same

9 1 0 0 1 The logic that is described in terms of old
states and the output function changes

10 1 0 1 0 -

11 1 0 1 1 Automate inputs and operation logic, which
is described in terms of new states change

12 1 1 0 0 -

13 1 1 0 1 The logic of the operation, which is de-
scribed in terms of previous states changes

14 1 1 1 0 -

15 1 1 1 1 The automate is completely replaced with
a new automate

structure automate can be defined as an automate whose transition and output
functions are explicitly time dependent, Ai+1 = F(Ai, t) or as A = (X(t), Y(t),
S(t), T(t), s0).

Monitoring Systems Development 9

In the present work, it is assumed that the MS operates with discrete states
and works in discrete time. As TS operates in discrete time and works with
discrete states, it can be considered that at each time ti the automate is in
some particular state si and then it can be defined as A = (X(si), Y(si), S(si),
T(si), s0). If the variable structure automate works for a very long time then the
number of states in general becomes infinite. It makes the procedure of synthesis
of such automate very difficult. This problem can be solved using 2 approaches:
by generating a new automate “on the fly” by means of correcting automate
structure every time when a new log arrives or by reducing this problem to the
special case when the number of states is a countable set. Thus, it would be
useful to consider special cases when a new automate is not change its state to
a new state, but only the individual elements (attributes) of the description are
changed. In this case, the variable-structured automate may be defined as a set
of automata, Ai = Ai-1, ∆i-1, i, where A is a set of operations, realization of
which can transform the automat to the desired automate.

Variable structure automata can be considered as a class of automata for
which different elements can be changed and other elements remain unchanged.
The main types of automata with variable structure are presented in Table 2,
where 0 corresponds to unchanged elements and 1 corresponds to variable ele-
ments. Some combinations have no practical implementations. This applies pri-
marily to cases where states appear and disappear, but the transition table does
not change. The situation with the appearance of new input signals without
changing the transition table is essentially the appearance of unidentified au-
tomata and signals. The reasons may be different. First, such a signal may occur
due to a time delay or failure in the log generation subsystem on the MS side,
second, it may be a really new signal for which the automate needs to be re-
configured. If the signal disappears, some of the automate states may become
unavailable. These cases require separate consideration. Other combinations have
real implementations. Changing input signals is a simple operation that can be
implemented in terms of operations “Add Signal” and “Remove Signal”.
Behavior changes (transition tables) can be implemented in terms of operations
“Delete Transition” and “Add Transition”. Thus, the automate reconfig-
uration can be implemented in the form of a scripts including the operations
listed above.

The task of synthesis of multilevel automata with variable structure is dis-
cussed in detail in the works of the authors [7, 8].

A stochastic automate (Moore) can be defined as A = (X, Y, S, M(x), s0),
where X is the finite set of input signals, Y is the finite set of output signals, S
is the counting set of states, s0 is the initial state or probability distribution of
initial states, M(x) = ||mij(x)||, q is a function-function distribution.

It is known fact, that by means of increasing automate complexity it is pos-
sible to build an equivalent deterministic automate. In this case, the inputs are
described by the stochastic matrix family X(t) = ||xt(t)||.

10 Vodyaho et al.

From the point of view of MS construction probabilistic machines are inter-
esting, first of all, from the point of view of organization of the training process,
by means of probability adjustment.

7 Structural Dynamics Models

The structural dynamics control subsystem at the logical level can be represented
by 2 main subsystems: structural dynamics model (SDM) and SDM control
automate (SDMCA) (Figure 3). The physical implementations of the system
according to Figure 3 can be very different. They can be realized as a distributed
system, or as distributed ontologies, SDM and SDMCA can be implemented in
the frame of one system or as separate unites.

Fig. 3. Logical structure of structural of dynamics management subsystem.

SDMCA receives information about state of individual TS elements changes,
which comes in the form of logs. On the basis of received information model cor-
rections are realized. If it is necessary, then SDMCA sends request for additional
information. It can be either simple queries or scripts. The SDMCA may receive
requests on the state of the TS elements from the MCA and generate responses
to these requests.

The IDA can be defined as:

Msd = (Gsd, Fsd, Qsd),

where Gsd, is a set of sets of graphs, Fsd is a set of graph conversion operators,
Qsd is the language of TS state requests. The Gsd graph is a multilevel graph and
describes the TS structure at some hierarchy level in terms of the subsystems
and the relationships between them:

Gi
sd = (Vi, Li),

Monitoring Systems Development 11

where Vi is the set of vertices belonging to the i-th level and Li is the set
of links belonging to the i-th level. Through Vij we will denote the j-th element
belonging to the i-th level, Lij - j-th link belonging to the i-th level, Lij . The
set of sets Gsd can be divided into 3 subsets: 1) a subset of fully serviceable
Gsds configurations; 2) a subset of partially serviceable Gsdp configurations; 3)
a subset of defective Gsdr configurations.

Each subset of Gsd includes a countable set of configurations. Each element
of the static model is vertex Vi and the link Lij can have an arbitrary number
of attributes. The number and types of attributes depend on the specifics of the
subsystem to which the vertex or link is mapped.

Attribute values can be read at an arbitrary point in time in a log format,
defined indirectly or with the help of logical inference. The attributes contain pa-
rameters characterizing the technical state in terms of “green-yellow-red, GYR”
[4], where “green” means that the element is fully serviceable, “yellow” means
that the element is partially serviceable, “red” means that the element is de-
fective. The parameter may also be unavailable. In this case, its value can be
determined through a logical inference. An arbitrary number of log available
points can be associated with each element. Reference and working (current)
models are distinguished. These models can have different attributes.

In particular, the working model describes the TS in concrete moment of
time. The reference model can be linked with the interval and the parameters can
be colored in the GYR colors. Elements (subsystems) can appear and disappear
at an arbitrary moment in time because of different reasons i.e. on/off, break-fix,
user login/exit.

Models of new elements may be known and stored in the repository, but may
not be known. Relationships between elements can also have attributes.

More formally, a model describing structural dynamics represented in the
form of multilevel relative finite state operational automate can be defined as
follows.

Automate = {Set of Input Messages, Set of Output Messages and Logs,
Set of Sets of Automate State, Set of Transition Tables}, Machine State =
{General State, Current TS Structure}, General State = {Serviceable, Faulty,
Partially Serviceable}, Current structure = {Elements, Links}, Structure ele-
ment = {Attributes, Links}, Attribute = {Set of Name-Value pairs}, Links =
{Siblings, Parents, Children}.

The following information comes to automate inputs: 1) requests TS state
(current state requests, past state requests, future state requests); 2) requests for
reconfiguration (requests for reconfiguration in order to improve performance,
requests for reconfiguration in case of TS element occurrence or disappearance.

Logs may by generated in different ways: 1) logs generated by built-in moni-
toring and diagnostics elements of TS subsystems; 2) logs generated upon request
from SDCA; 3) logs generated by diagnostic scripts launched by SDCA.

SDCA is a processor (engine) providing access to the model by performing a
set of operations. SDCA is responsible for monitoring the TS state and control
TS structural dynamics. The SDCA input receives logs, which can be messages

12 Vodyaho et al.

(responses to requests) or signals. The SDCA may provide requests for the state
of the TS elements and provide control signals for reconfiguration or parameter
adjustment. All end-user requests for TS element status pass through MCA. The
SDCA controls the current model using commands of restructuring the current
model. The main commands of model management are following: 1) replace the
model; 2) to remove vertex; 3) add vertex; 4) to add link; 5) remove link; 6)
remove attribute; 7) add attribute; 8) set attribute value.

SDCA inputs may receive requests for current, past and future state of TS
or its elements. The main types of requests are of the following type: in what
state is the i-th element of the TS, in what state was the i-th element of the TS
in t moment of time, which subsystems are in a partially serviceable state, etc.

The automate operation the can be described as follows. The automate
changes its state when new log or signal, which encapsulate information about
the change in the state of the TS element, appears. Automate has memory for
saving information about all previous States and traces. When a request about
the state of the TS or TS elements is made by a user, the automate generates the
required representation on the basis of the current state vector and/or historical
vectors. The machine can query the status of the TS elements. This action does
not change the automate state.

It should be noted that in general, the number of states of the automate
can be infinitely large, for example, in the case of IoT systems. In this case the
automate is to be built in run time mode. In many particular cases, the number of
automate states is finite, for example when we deal with reconfigurable technical
systems.

The generalized SDCA algorithm is as follows.

Step 1. Starting the polling process.

Step 2. Waiting for input information.

Step 3. When information about the change in the state of the TS element
appears, the following actions are performed:

Step 3.1. Adjust TS model

Step 3.2. Reconfigure TS if necessary

Step 3.3. Send restructuring information to BPDCA and to interested
users.

Step 3.4. Adjust and restart the polling process.

Step 4. If a request about TS state arrives then:

Step 4.1. If it is possible, the response is generated on the base on the
state vector, and is send to the user.

Step 4.2. If it is impossible then special diagnostic script is generated
and launched. The response is formed on the base of the script execution results.

Step 5. If at the input we have a request about the reasons for the incorrect
operation of BP, then the diagnostic script is generated and launched, the results
of script operation are used to form a response.

Monitoring Systems Development 13

8 Behavioral TS models

Dynamic behavioral TS models are models of BP running in the TS. A wide
range of models and languages, such as Petri networks, automata models, work
flow graphs, L, YAWL etc can be used [2, 12]. Information about BP current
state can be obtained by logs, in XES format [14].

Taking into account earlier listed behavior models requirements, a workflow
graph model has been selected. Three components of the work flow graph are of
interest: the control flow graph, the data (object) flow graph, and the resource
graph. The reference model is a work flow graph whose vertices are loaded with
information identical to the information present in the logs in the form Name-
Values form. If possible, GYR intervals can be set. More formally, the pattern
of behavior can be described as follows:

Reference Model = {Vertex Set, Arc Set, Markup Set}.
< V ertex >::=< V ertex− name >< Parameter − V alue > .

The contents of the Parameter-Values field can be specified in 3 ways: one
parameter-one value or one parameter - Interval of values, one parameter of 3
interval (Green, Yellow, Red).

BPDCA operates as follows. Logs are input to BPDCA. At the output we
have BP control signals, which perform BP adjustment. It is assumed that the
reconfiguration is realized inside the TS and the TS control unit selects one of the
reconfiguration options from the list of possible ones. The BPDCA may request
and receive current state information from the SDCA. The BPDCA informs the
SDCA about violations in the BP implementation process and receives infor-
mation about the TS structure change. In addition, the BPDCA input receives
requests about the current status of the BP, to which it responds.

Generalized BPDCA algorithm is as follows.

Step 1. Logs and signals, which are generated by BP, are transmitted to
BPCA input

Step 2. Logs are compared to reference logs

Step 2.1. If all values are in the green zone, then continue

Step 2.2. If values are in the red or yellow zone, a message is sent to
the SDCA.

Step 2.3. If the TS restructuring signal is received, the possibility of
BP restructuring is considered.

If it is possible, then the reconfiguration is performed and a message is sent
to the MCA. Markups are implemented using standard methods [2] for workflow
methods.

It should be noted that, unfortunately, it is impossible to present the reference
model in the form of traces, since for a correctly operating process it is sometimes
impossible to determine exactly the order of arrival of logs. This can be done,
for example, with the help of data flow models.

14 Vodyaho et al.

9 Representations formation models

The presentations formation models (RFM) describe how users interact with
the MS using Domain Specific Languages (DSL). Formally, the RFM can be
defined as Mpf ={TRM,DSL}, where TRM is a set of models built on the
Mpf model, and DSL is a set of languages for interaction with MS, focused on
different categories of users DLS→RQM and M→RSDLS.

RFM can be realized as a set of services for translation requests and responses
into the DSL of different users. As a model describing the operation of the PFM,
it is proposed to use a modified data fusion model based on a well-known JDL
model [15], which includes 6 Levels.

Level 0. Signal/Feature Assessment. The main task solved at this level is to
estimate and predict the values of the individual parameters of TS elements.

Level 1. Entity assessment. The main task solved at this level is to estimate
and predict the values of individual parameters and the state of individual enti-
ties (objects).

Level 2. Situation Assessment. The main task solved at this level is to as-
sess and predict the state of the structure and parameters of relations between
elements of some part of the TS and their impact on the state of the objects
themselves.

Level 3. Impact Assessment. The main task solved at this level is assessment
and prediction of future states of the TS, its parts and formation of alternative
variants of the system response.

Level 4. Process Assessment. The main task at this level is to evaluate and
predict the performance characteristics of the TS and compare them with the
desired performance indicators.

Level 5. Human-machine interaction (HMI). (Cognition Refinement). Func-
tions related to the improvement of the man machine interface are implemented
at this level. This level is responsible for virtualization and collective decision-
making.

The JDL model assumes a bidirectional process. Bottom-up movement is a
process of information mining from raw data, and then knowledge extraction
from information and decision-making. A reverse motion is a stream of queries
that are formulated by interested persons in terms of the subject area. Note that
functions related to different levels can be implemented in an arbitrary order [6].

In fact, JDL model defines what is “done” rather than “how is done” i.e. the
JDL model is a functional model. It was never seen as a process model or as a
technical architecture model. The classic JDL model is a fairly general model
that is not directly related to any of the subject domains.

Visual data-fusion model. This model is a further development of JDL model.
The authors solved the following tasks: i) minimization the amount of informa-
tion provided to the user saving the needed level of quality; ii) provide informa-
tion strictly in accordance with the user request and role; iii) provide information
taking into account the current situation. The main distinguishing feature of this
model from classical JDL model is that suggested MJDL model is domain ori-
ented model and because of it this model can be populated by concrete services

Monitoring Systems Development 15

and stakeholders. So suggested MJDL model may be conceded as functional-
process model.

The generalized structure of the proposed MJDL is shown in Figure 4

The proposed MJDL model as well as the classic JDL model has 6 levels.
The main users (stakeholders) include 4 groups: service engineers (responsible
for the technical state of the TS infrastructure), operator (monitoring the state
of separate TS subsystems, if necessary, they can realize control actions), man-
agers responsible for the technical state of large subsystems or the TS), business
analysts and top managers who are primarily interested in the overall state of
the TS. These user groups work at different levels of the MJDL model. Separate
levels of MJDL model realize following functionality.

Level 0. The main task solved at this level is generation requests for logs
and processing ”raw” logs, processing, evaluation and prediction of values of TS
elements individual parameters. It can be said that individual logs are processed
at this level. Typical problems solved at this level are the elimination of noise
such as random logs, loss of logs, inability to receive the required log, etc.

Level 1. The task of this level is characteristics evaluation of individual el-
ements of TS and prediction the values of individual parameters and the state
of individual TS subsystems. At this level functions related to the generation of
information about individual objects are implemented. It may be, for example,
information about the technical state of individual subsystems of a CTS, the
location of the object, the speed of movement and the direction of movement.

Level 2. Evaluation of the overall TS state. The main task solved at this level
is to estimate and predict the TS state. This layer implements functions related
to generating situation information in a particular context in terms of entities
(subsystems), relationships between them and events.

Level 3. Reaction definition. This level is present if we speak about a moni-
toring and management system. The main task solved at this level is evaluation
and prediction of future states of the TS and its parts in terms of utility/cost,
generation of alternative versions of control signals generation. At this level,
the situation is assessed, which may include an assessment of the dynamics of
the situation, assumptions about possible actions of objects external to the CA,
threats and their own vulnerabilities.

Level 4. Efficiency assessment. The main challenge at this level is to evaluate
and predict the performance characteristics of both the TS and the MS itself
and compare them with the desired performance indicators. At this level, the
CM itself is monitored, in particular to improve its timing parameters.

Level 5. Human-machine interaction. Functions related to the implementa-
tion of HMI procedures are implemented at this level. In addition, this level
is responsible for virtualization and collective decision making. Also knowledge
management mechanisms are implemented at this level, i.e. such questions are
solved: who requests information, who has access to information, for what pur-
pose the information will be used, etc.

The use of the proposed MJDL model allows solve 2 main problems: creation
of common terminology, which specialists in different fields can use in the de-

16 Vodyaho et al.

Fig. 4. MJDL model.

Monitoring Systems Development 17

sign of different MS for different subject domains. In this context, the task of
harmonizing inter-layer interfaces, that is, standardizing the way information is
presented, comes to the fore.

10 Typical tasks of monitoring. Variants of problem
statement

Depending on what is known about the TS and what needs to be known, 4 global
tasks for MS can be identified.

Task A. Verifying the relevance of the model using log file information. Cor-
responds to the case where it is known both the static model of the TS and its
dynamic model, i.e. models relating to all levels of interest are known.

Task B. Build a behavior model using a structural model and logs. In this
case, the TS structure is known, but there is no knowledge about BP in TS.
This problem is similar to the classic process mining task [12] when we want to
restore the BP structure either from scratch from logs or from a known higher
level dynamic model and logs.

Task C. Building a structural model by behavior model and logs. BPs running
in the TS are known or can be restored by logs. For example, in technical sys-
tems, this may be an option where it is necessary to determine the cause of the
malfunction from an anomaly in behavior.

Task D. Construction of structural and behavior models using descent ap-
proach. In this case there is no complete information on both system structure
and BP. There is only a set of logs.

11 Generalized algorithms of typical monitoring problems
solving

Tasks Type A (Model conformance checking). The very fact that the
model is irrelevant can be detected either through the appearance of messages
(logs) or when internal control circuits are activated. It is assumed that the
proper polling procedures are started. For Type A of problem statement there
are a number of special cases

Task A1. Verify that the structure model and behavior model are correct. The
indication of incorrect models can be: a message from SDCA generated by build
in internal control schemes or a reaction to a request to rebuild the BP, a message
from BPDCA about appearance of a yellow or red log, The reaction of MS can
be a request to SDCA for running monitoring script in order to identify the
origin of incorrect operation.

Task A2. Correction of models. The structure model is adjusted when it
becomes known about changing TS element state. It can be done on the base of
information from the log or by means of launching diagnostic script. Correction
of the behavior is performed in the following cases: when a log with information
about the restructuring of the TS, when a yellow or red log appears or when

18 Vodyaho et al.

a request from the user about restructuring comes, for example, in order to
improve the efficiency of the TS.

Task A3. Specifies the point of divergence between reference and real models.
This task usually occurs in a MS running in post mortem mode. A typical
approach to solving this problem is to view logs from the BP, i.e. from the
BPDCA. We can start viewing logs both from the beginning or from the end.
One can track the control flow graph, resource graph, and object flow graph for
yellow-red logs. It is possible to track logs coming from SDCA for appearance
of yellow-red logs. This approach usually allow detect the time and cause of the
error.

Task A4. Construction of a picture of the development of an emergency situ-
ation. This task usually occurs in post mortem systems. The model of emergency
situation development can be represented as a pair of ordered and time-aligned
chains of yellow-red logs from the SDCA and BPDCA Using this information
one can build causal links between events.

Task A5. Identify risks of emergency situations and present situation devel-
opment options. Alarm risks are defined in terms of yellow logs both from SDCA
and BPDCA. The forecast is based on the assumption that yellow logs can turn
into red log. So one can define the structural element responsible for the appear-
ance of the yellow log, if the emergency situation is detected through the log
from the BPDCA.

Tasks of type B. Building a behavior model from structure model
and logs. This is a well known process mining task [12].

Task B1. Build behavior model on the basis of structure model and logs. Con-
trol flow graph recovery is a process mining task in classical statement. (Restor-
ing a resource graph and an object flow graph are separate tasks.)

Task B2. Restore the structure of individual BP from logs. This is a special
case of classical process mining task when it is necessary to build BP model
using logs only from certain BP.

Task B3. It is a task of finding certain patterns of unwanted behavior. The
solution of this problem assumes usage of a pattern library. This problem as a
rule is a security problem.

Tasks of type C. Building a structural model by behavior and logs.
Since the structural model is a multilevel relative finite state operational auto-
mate, this task is the essence of the task of synthesis of such automate from logs
[7,8].

Task C1. Receiving actual information about changing of TS structure.

The main idea of solving this problem is running polling processes and process
logs in run time. Also it is necessary to process in run time messages from the TS
build-in control systems which are responsible for TS reconfiguration. In some
cases it would be enough only to correct models but in very often it is necessary
to rebuild the model from the stretch.

Task C2. Building a structural model from a behavior model. This is the task
of synthesis multilevel relative finite state operational automate from logs. This
task can also be defined as the task of determining the structure of a black box

Monitoring Systems Development 19

in terms of finite state operational automate on the basis of known behavior
in a minimum number of steps. Algorithms of synthesis of such automata are
described in details in publications [6, 7].

Task C3. Identify a faulty TS element within the minimum time. This task
assumes that some TS subsystem is known to be malfunctioning, but the specific
element causing the fault is unknown. It is necessary to generate or select the
diagnostic procedure which can find the faulty element.

Task C4. Defining a TS element which is a ”bottleneck”.The term ”bottle-
neck” can be defined in different ways. If bottleneck is an unreliable element, it
is the task 5. If a bottleneck is defined in terms of performance or throughput,
this task is solved by receiving proper logs from running benchmarks. These can
be both logs from structural elements and logs received from BP.

Tasks type D. Building of structural and behavioral models using
descent approach. This fairly common task can be solved in different ways
depending on which logs are available. If logs relating to all levels are available,
the multilevel relative finite state operational automate can be build (Task C2)
and then a behavior model can be build. If logs related only to certain levels are
available, one can use the ”step by step descent” method, that is, one can build
only of the level of detail of the available logs.

The generalized algorithm is as follows.

Step 1. Define a behavior model at the top i0 level.

Step 2. Using the black box definition structure procedure (Task C2), define
the top i0 layer structure.

Step 3. For each i0 level model element, using generated test scripts build
lower level models in the same way.

Thus, the algorithm is reduced to the sequential application of the black
box structure determination procedure and the construction of BP by logs. The
case where logs themselves are available, but their structure and semantic are
unknown, is a separate task, which is not considered in this work. This task type
can be defined as a separate type (Type E). A type E task can be formulated as
a task of defining a log structure by a structural model and a behavior model.

12 Example of suggested approach usage

The suggested approach was used for development of a number of real IS. One
of such systems is a cable television network management system. Modern cable
television networks have hundreds of thousands and even millions of subscribers,
and the number continues to grow. The system itself is a distributed system that
includes data networks, server and subscriber equipment. The typical structure
of a cable digital television (CDT) network is shown in Figure 5

In Figure 5, the following designations are used: Server - Data Center; LS
– local segments of the network, STB - Set-top-box, which supports basic and
extended functionality of user’s TV receivers. Modern CDT networks has a num-
ber of specific features. Such features include: large and very large network size,

20 Vodyaho et al.

Fig. 5. The typical structure of CDT network.

high dynamic environment, heterogeneity of network infrastructure, strict re-
quirements in terms of total cost of ownership, reliability, reaction speed etc.

Failure of even one elements of such a network can lead to avalanche effects
when a local problem causes an avalanche-like increase in traffic between the
local server and the STBs due to multiple attempts to receive/transmit data.
It is obvious that all possible scenarios of behavior of such systems cannot be
described in advance.

Monitoring of STB network interaction errors (so-called ”last mile” errors)
and receiver errors are particularly important. While monitoring CDT network
it is necessary to take into account the following limitations when solving moni-
toring and control tasks: TV consoles, especially old models, have weak technical
capabilities, data collection and transmission networks are characterized by low
bandwidth, local servers, as a rule, have low performance. All these constraints
define the context for MS development. In addition, the context is determined
by end-user behavior.

CDT network operators have enough big toolbox for collecting and processing
information about subscribers but the operators do not use these tools inten-
sively. The problem is that existing restrictions do not allow realize processing
of these information because this will lead to increasing network traffic and de-
creases the level of user services quality. For example it can increase the response
time for user actions. In some cases the volume of data to be transferred can be
many times more than real bandwidth of the network. Usage of model approach
when models are placed in high performance central server and enough power-
ful region servers allow solve many mentioned above problems and essentially
decrease the traffic inside the management network.

Monitoring Systems Development 21

13 Conclusions

The main idea developed architectural model approach to MS development is
that the TS is considered as partially observed IS, information (knowledge) of
which for any moment of time is not available in full volume. Available informa-
tion (knowledge) is stored in a form of dynamic models which include 3 groups
of models: the models describing the structural dynamics, models describing
behavior and models of transformation of representations.

The relevance of models is maintained by means of processing system events
coming in the form of log- Thus, both MS and TS can be considered as agile
architecture systems. Suggested approach is based on the algorithms of auto-
matic synthesis of multilevel variable structure automata and process mining
algorithms. Suggested approach was used in the process of development of a
number of MS for different subject domains. Further direction of suggested ap-
proach development is solving problem of building MS for cognitive IS. This can
be done by moving from hierarchical variable-structure automata to hierarchi-
cal probability variable-structure automata. This would allow realize learning
procedures.

References

1. Sragovich V. Mathematical Theory of Adaptive Control World Scientific. Publishing
Danvers, NJ, 2006. – 473 .

2. Dumas M., La Rosa M., Mendling J., Reijers H. Fundamentals of Business Process
Management Second Edition. Springer-Verlag GmbH Germany, Berlin, 2018, – 527
p.

3. Weske M. Business Process Management. Springer-Verlag Berlin Heidelberg, 2012.
– 403 .

4. Osipov V.Yu. Synthesis of effective programs for managing information and com-
puting resources. Devices and control systems. 1998, No. 12. S. 24 - 27.

5. ITIL - IT Service Management. — URL: https://www.axelos.com/best-practice-
solutions /itil

6. Blasch E., Bosse E., Lambert D. High-Level Information Fusion Management and
System Design, Artech House Publishers, Norwood, MA. 2012. – 376 p.

7. Osipov V., Lushnov M., Stankova E., Vodyaho A. Inductive Synthesis of the Mod-
els of Biological Systems According to Clinical Trials. // International Conference
on Computational Science and Its Applications (ICCSA 2017). Lecture Notes in
Computer Science, vol. 10404. Springer, Cham. – Pp 103-115.

8. Osipov V., Vodyaho A., Zhukova N. About one approach to multilevel behavioral
program synthesis for television devices // International journal of computers and
communications. 2017. Volume 11, P. – 17-25.

9. Munoz-Gama J. Conformance Checking and Diagnosis in Process Mining. Compar-
ing Observed and Modeled Processes, Springer International Publishing AG. Berlin
Heidelberg, 2016. – 202 p.

10. Huang Jun, Hua Kun (Eds.) Managing the Internet of Things: Architectures, The-
ories and Applications. The Institution of Engineering and Technology, 2016. — 226
p.

22 Vodyaho et al.

11. Iyengar S., Brooks R., Distributed Sensor Networks. Taylor Francis, London. 2012-
1140p.

12. Van der Aalst W. Process Mining Data Science in Action. Second Edition. – Hei-
delberg. Springer, 2016. – 468 p.

13. Rozanski N., Woods E. Software Systems Architecture. Working with Stakeholders
Using Viewpoints and Perspectives. – Upper Saddle River, NJ. Addison-Wesley,
2012. – 715 p.

14. XES Schema Definition. http://www.xes-standard.org/

